Window Linux
UNIX Introduction
What is UNIX?

UNIX systems also have a graphical user
interface (GUI) similar to Microsoft Windows which provides an easy to use
environment. However, knowledge of UNIX is required for operations which aren't
covered by a graphical program, or for when there is no windows interface
available, for example, in a telnet session.
Types of UNIX

Here in the School, we use Solaris on our
servers and workstations, and Fedora Linux on the servers and desktop PCs.
The UNIX operating system
The UNIX operating system is made up of
three parts; the kernel, the shell and the programs.
The kernel
The kernel of UNIX is the hub of the
operating system: it allocates time and memory to programs and handles the
filestore and communications in response to system calls.
As an illustration of the way that the
shell and the kernel work together, suppose a user types rm myfile
(which has the effect of removing the file myfile). The shell searches
the filestore for the file containing the program rm,
and then requests the kernel, through system calls, to execute the program rm
on myfile. When the process rm myfile has finished
running, the shell then returns the UNIX prompt % to the user, indicating that
it is waiting for further commands.
The shell
The shell acts as an interface between the
user and the kernel. When a user logs in, the login program checks the username
and password, and then starts another program called the shell. The shell is a
command line interpreter (CLI). It interprets the commands the user types in
and arranges for them to be carried out. The commands are themselves programs:
when they terminate, the shell gives the user another prompt (% on our
systems).
The adept user can customise his/her own
shell, and users can use different shells on the same machine. Staff and
students in the school have the tcsh shell by default.
The tcsh shell has certain features to
help the user inputting commands.
Filename Completion - By typing part of
the name of a command, filename or directory and pressing the [Tab] key,
the tcsh shell will complete the rest of the name automatically. If the shell
finds more than one name beginning with those letters you have typed, it will
beep, prompting you to type a few more letters before pressing the tab key
again.
History - The shell keeps a list of the
commands you have typed in. If you need to repeat a command, use the cursor
keys to scroll up and down the list or type history for a list of previous
commands.
Files and processes
Everything in UNIX is either a file or a
process.
A process is an executing program
identified by a unique PID (process identifier).
A file is a collection of data. They are
created by users using text editors, running compilers etc.
Examples of files:
·
a document (report, essay etc.)
·
the text of a program written in some
high-level programming language
·
instructions comprehensible directly to
the machine and incomprehensible to a casual user, for example, a collection of
binary digits (an executable or binary file);
·
a directory, containing information about
its contents, which may be a mixture of other directories (subdirectories) and
ordinary files.
The Directory Structure
All the files are grouped together in the
directory structure. The file-system is arranged in a hierarchical structure,
like an inverted tree. The top of the hierarchy is traditionally called root
(written as a slash / )

In the diagram above, we see that the home
directory of the undergraduate student "ee51vn" contains two
sub-directories (docs and pics) and a file called report.doc.
The full path to the file report.doc
is "/home/its/ug1/ee51vn/report.doc"
Starting an UNIX terminal
To open an UNIX terminal window, click on
the "Terminal" icon from Applications/Accessories menus.

An UNIX Terminal window will then appear
with a % prompt, waiting for you to start entering commands.

Working with
Terminal
1.1 Listing files and directories
ls (list)
When you first login, your current working
directory is your home directory. Your home directory has the same name as your
user-name, for example, ee91ab, and it is where your personal files and
subdirectories are saved.
To find out what is in your home
directory, type
% ls
The ls
command ( lowercase L and lowercase S ) lists the contents of your current
working directory.

There may be no files visible in your home
directory, in which case, the UNIX prompt will be returned. Alternatively,
there may already be some files inserted by the System Administrator when your
account was created.
ls does not, in fact, cause all the files in
your home directory to be listed, but only those ones whose name does not begin
with a dot (.) Files beginning with a dot (.) are known as hidden files and
usually contain important program configuration information. They are hidden
because you should not change them unless you are very familiar with UNIX!!!
To list all files in your home directory
including those whose names begin with a dot, type
% ls -a
As you can see, ls -a
lists files that are normally hidden.

ls is an
example of a command which can take options: -a is an example of an
option. The options change the behaviour of the command. There are online
manual pages that tell you which options a particular command can take, and how
each option modifies the behaviour of the command.
1.2 Making Directories
mkdir (make directory)
We will now make a subdirectory in your
home directory to hold the files you will be creating and using in the course
of this tutorial. To make a subdirectory called unixstuff in your current
working directory type
% mkdir unixstuff
To see the directory you have just
created, type
% ls
1.3 Changing to a different directory
cd (change directory)
The command cd directory
means change the current working directory to 'directory'. The current
working directory may be thought of as the directory you are in, i.e. your
current position in the file-system tree.
To change to the directory you have just
made, type
% cd unixstuff
Type ls
to see the contents (which should be empty)
Exercise 1a
Make another directory inside the unixstuff
directory called backups
1.4 The directories . and ..
Still in the unixstuff directory, type
% ls -a
As you can see, in the unixstuff directory (and
in all other directories), there are two special directories called (.)
and (..)
The current directory (.)
In UNIX, (.) means the current directory, so
typing
% cd .
NOTE:
there is a space between cd and the dot
means stay where you are (the unixstuff
directory).
This may not seem very useful at first, but using (.)
as the name of the current directory will save a lot of typing, as we shall see
later in the tutorial.
The parent directory (..)
(..) means the parent of the current directory,
so typing
% cd ..
will take you one directory up the hierarchy (back to
your home directory). Try it now.
Note: typing cd with no argument always returns you to
your home directory. This is very useful if you are lost in the file system.
1.5 Pathnames
pwd (print working directory)
Pathnames enable you to work out where you
are in relation to the whole file-system. For example, to find out the absolute
pathname of your home-directory, type cd to get back to your home-directory and
then type
% pwd
The full pathname will look something like this -
/home/its/ug1/ee51vn
which means that ee51vn (your home
directory) is in the sub-directory ug1 (the group directory),which in
turn is located in the its sub-directory, which is in the home
sub-directory, which is in the top-level root directory called " /
" .

Exercise 1b
Use the commands cd,
ls and pwd to explore the file system.
(Remember, if you get lost, type cd
by itself to return to your home-directory)
1.6 More about home directories and pathnames
Understanding pathnames
First type cd to get back to your
home-directory, then type
% ls unixstuff
to list the conents of your unixstuff directory.
Now type
% ls backups
You will get a message like this -
backups: No such file or directory
The reason is, backups is not in
your current working directory. To use a command on a file (or directory) not
in the current working directory (the directory you are currently in), you must
either cd to the correct directory, or specify its full pathname.
To list the contents of your backups directory, you must type
% ls unixstuff/backups
~ (your home directory)
Home directories can also be referred to
by the tilde ~ character. It can be used to specify paths starting at
your home directory. So typing
% ls ~/unixstuff
will list the contents of your unixstuff
directory, no matter where you currently are in the file system.
What do you think
% ls ~
would list?
What do you think
% ls ~/..
would list?
Summary
Command
|
Meaning
|
ls
|
list files and directories
|
ls -a
|
list all files and directories
|
mkdir
|
make a directory
|
cd directory
|
change to named directory
|
cd
|
change to home-directory
|
cd ~
|
change to home-directory
|
cd ..
|
change to parent directory
|
pwd
|
display the path of the current
directory
|
2.1 Copying Files
cp (copy)
cp file1 file2 is the command
which makes a copy of file1 in the current working directory and calls
it file2
What we are going to do now, is to take a
file stored in an open access area of the file system, and use the cp
command to copy it to your unixstuff directory.
First, cd
to your unixstuff directory.
% cd ~/unixstuff
Then at the UNIX prompt, type,
% cp /vol/examples/tutorial/science.txt .
Note:
Don't forget the dot . at the end. Remember, in UNIX, the dot means the
current directory.
The above command means copy the file science.txt
to the current directory, keeping the name the same.
(Note:
The directory /vol/examples/tutorial/ is an area to which everyone in
the school has read and copy access. If you are from outside the University,
you can grab a copy of the file here.
Use 'File/Save As..' from the menu bar to save it into your unixstuff
directory.)
Exercise 2a
Create a backup of your science.txt file by
copying it to a file called science.bak
2.2 Moving files
mv (move)
mv file1 file2 moves (or renames)
file1 to file2
To move a file from one place to another,
use the mv command. This has the effect of moving rather than copying the file,
so you end up with only one file rather than two.
It can also be used to rename a file, by
moving the file to the same directory, but giving it a different name.
We are now going to move the file
science.bak to your backup directory.
First, change directories to your
unixstuff directory (can you remember how?). Then, inside the unixstuff
directory, type
% mv science.bak backups/.
Type ls and ls backups to see if it has
worked.
2.3 Removing files and directories
rm (remove), rmdir (remove directory)
To delete (remove) a file, use the rm
command. As an example, we are going to create a copy of the science.txt
file then delete it.
Inside your unixstuff directory,
type
% cp science.txt tempfile.txt
% ls
% rm tempfile.txt
% ls
% ls
% rm tempfile.txt
% ls
You can use the rmdir
command to remove a directory (make sure it is empty first). Try to remove the backups
directory. You will not be able to since UNIX will not let you remove a
non-empty directory.
Exercise 2b
Create a directory called tempstuff
using mkdir , then remove it using the rmdir
command.
2.4 Displaying the contents of a file on the screen
clear (clear screen)
Before you start the next section, you may
like to clear the terminal window of the previous commands so the output of the
following commands can be clearly understood.
At the prompt, type
% clear
This will clear all text and leave you with the % prompt
at the top of the window.
cat (concatenate)
The command cat can be used to display the contents of a
file on the screen. Type:
% cat science.txt
As you can see, the file is longer than than the size of
the window, so it scrolls past making it unreadable.
less
The command less writes the contents of a
file onto the screen a page at a time. Type
% less science.txt
Press the [space-bar] if you want
to see another page, and type [q] if you want to quit reading. As you
can see, less is used in preference to cat
for long files.
head
The head
command writes the first ten lines of a file to the screen.
First clear the screen then type
% head science.txt
Then type
% head -5 science.txt
What difference did the -5 do to the head command?
tail
The tail
command writes the last ten lines of a file to the screen.
Clear the screen and type
% tail science.txt
Q. How can you view the last 15 lines of
the file?
2.5 Searching the contents of a file
Simple searching using less
Using less,
you can search though a text file for a keyword (pattern). For example, to
search through science.txt for the word 'science', type
% less science.txt
then, still in less,
type a forward slash [/] followed by the word to search
/science
As you can see, less
finds and highlights the keyword. Type [n] to search for the next
occurrence of the word.
grep (don't ask why it is called grep)
grep is one of many standard UNIX utilities.
It searches files for specified words or patterns. First clear the screen, then
type
% grep science science.txt
As you can see, grep
has printed out each line containg the word science.
Or has it ????
Try typing
% grep Science science.txt
The grep
command is case sensitive; it distinguishes between Science and science.
To ignore upper/lower case distinctions,
use the -i option, i.e. type
% grep -i science science.txt
To search for a phrase or pattern, you
must enclose it in single quotes (the apostrophe symbol). For example to search
for spinning top, type
% grep -i 'spinning top' science.txt
Some of the other options of grep are:
-v display those lines that do NOT match
-n precede each matching line with the line number
-c print only the total count of matched lines
-n precede each matching line with the line number
-c print only the total count of matched lines
Try some of them and see the different results. Don't
forget, you can use more than one option at a time. For example, the number of
lines without the words science or Science is
% grep -ivc science science.txt
wc (word count)
A handy little utility is the wc
command, short for word count. To do a word count on science.txt, type
% wc -w science.txt
To find out how many lines the file has, type
% wc -l science.txt
Summary
Command
|
Meaning
|
cp file1
file2
|
copy
file1 and call it file2
|
mv file1
file2
|
move
or rename file1 to file2
|
rm file
|
remove
a file
|
rmdir directory
|
remove
a directory
|
cat file
|
display
a file
|
less file
|
display
a file a page at a time
|
head file
|
display
the first few lines of a file
|
tail file
|
display
the last few lines of a file
|
grep 'keyword'
file
|
search
a file for keywords
|
wc file
|
count
number of lines/words/characters in file
|
3.1 Redirection
Most processes initiated by UNIX commands
write to the standard output (that is, they write to the terminal screen), and
many take their input from the standard input (that is, they read it from the
keyboard). There is also the standard error, where processes write their error
messages, by default, to the terminal screen.
We have already seen one use of the cat command to write the contents of a file
to the screen.
Now type cat without specifing a file to read
% cat
Then type a few words on the keyboard and
press the [Return] key.
Finally hold the [Ctrl] key down
and press [d] (written as ^D for short) to end the input.
What has happened?
If you run the cat command without specifing a file to read,
it reads the standard input (the keyboard), and on receiving the 'end of file'
(^D), copies it to the standard output (the screen).
In UNIX, we can redirect both the input
and the output of commands.
3.2 Redirecting the Output
We use the > symbol to redirect the
output of a command. For example, to create a file called list1
containing a list of fruit, type
% cat > list1
Then type in the names of some fruit.
Press [Return] after each one.
pear
banana
apple
^D {this means press [Ctrl] and [d] to stop}
banana
apple
^D {this means press [Ctrl] and [d] to stop}
What happens is the cat command reads the
standard input (the keyboard) and the > redirects the output, which normally
goes to the screen, into a file called list1
To read the contents of the file, type
% cat list1
Exercise 3a
Using the above method, create another
file called list2 containing the following fruit: orange, plum, mango,
grapefruit. Read the contents of list2
3.2.1 Appending to a file
The form >> appends standard output
to a file. So to add more items to the file list1, type
% cat >> list1
Then type in the names of more fruit
peach
grape
orange
^D (Control D to stop)
grape
orange
^D (Control D to stop)
To read the contents of the file, type
% cat list1
You should now have two files. One
contains six fruit, the other contains four fruit.
We will now use the cat command to join
(concatenate) list1 and list2 into a new file called biglist.
Type
% cat list1 list2 > biglist
What this is doing is reading the contents
of list1 and list2 in turn, then outputing the text to the file biglist
To read the contents of the new file, type
% cat biglist
3.3 Redirecting the Input
We use the < symbol to redirect the
input of a command.
The command sort alphabetically or
numerically sorts a list. Type
% sort
Then type in the names of some animals.
Press [Return] after each one.
dog
cat
bird
ape
^D (control d to stop)
cat
bird
ape
^D (control d to stop)
The output will be
ape
bird
cat
dog
bird
cat
dog
Using < you can redirect the input to
come from a file rather than the keyboard. For example, to sort the list of
fruit, type
% sort < biglist
and the sorted list will be output to the
screen.
To output the sorted list to a file, type,
% sort < biglist > slist
Use cat to read the contents of the file slist
3.4 Pipes
To see who is on the system with you, type
% who
One method to get a sorted list of names
is to type,
% who > names.txt
% sort < names.txt
% sort < names.txt
This is a bit slow and you have to
remember to remove the temporary file called names when you have finished. What
you really want to do is connect the output of the who command directly to the
input of the sort command. This is exactly what pipes do. The symbol for a pipe
is the vertical bar |
For example, typing
% who | sort
will give the same result as above, but
quicker and cleaner.
To find out how many users are logged on,
type
% who | wc -l
Exercise 3b
Using pipes, display all lines of list1
and list2 containing the letter 'p', and sort the result.
Summary
Command
|
Meaning
|
command > file
|
redirect
standard output to a file
|
command >> file
|
append
standard output to a file
|
command < file
|
redirect
standard input from a file
|
command1 | command2
|
pipe
the output of command1 to the input of command2
|
cat file1
file2 > file0
|
concatenate
file1 and file2 to file0
|
sort
|
sort
data
|
who
|
list
users currently logged in
|
4.1 Wildcards
The * wildcard
The character * is called a wildcard, and will match
against none or more character(s) in a file (or directory) name. For example,
in your unixstuff directory, type
% ls list*
This will list all files in the current
directory starting with list....
Try typing
% ls *list
This will list all files in the current
directory ending with ....list
The ? wildcard
The character ? will match exactly one character.
So ?ouse will match files like house and mouse, but not grouse.
Try typing
So ?ouse will match files like house and mouse, but not grouse.
Try typing
% ls ?list
4.2 Filename conventions
We should note here that a directory is
merely a special type of file. So the rules and conventions for naming files
apply also to directories.
In naming files, characters with special
meanings such as / * & % , should be avoided. Also, avoid using
spaces within names. The safest way to name a file is to use only alphanumeric
characters, that is, letters and numbers, together with _ (underscore) and .
(dot).
Good filenames
|
Bad filenames
|
project.txt
|
project
|
my_big_program.c
|
my
big program.c
|
fred_dave.doc
|
fred
& dave.doc
|
File names conventionally start with a
lower-case letter, and may end with a dot followed by a group of letters
indicating the contents of the file. For example, all files consisting of C
code may be named with the ending .c, for example, prog1.c . Then
in order to list all files containing C code in your home directory, you need
only type ls *.c in that directory.
4.3 Getting Help
On-line Manuals
There are on-line manuals which gives
information about most commands. The manual pages tell you which options a
particular command can take, and how each option modifies the behaviour of the
command. Type man command to read the manual page for a particular command.
For example, to find out more about the wc (word count) command, type
% man wc
Alternatively
% whatis wc
gives a one-line description of the
command, but omits any information about options etc.
Apropos
When you are not sure of the exact name of
a command,
% apropos keyword
will give you the commands with keyword in
their manual page header. For example, try typing
% apropos copy
Summary
Command
|
Meaning
|
*
|
match
any number of characters
|
?
|
match
one character
|
man command
|
read
the online manual page for a command
|
whatis command
|
brief
description of a command
|
apropos keyword
|
match
commands with keyword in their man pages
|
5.1 File system security (access rights)
In your unixstuff directory, type
% ls -l (l for long listing!)
You will see that you now get lots of
details about the contents of your directory, similar to the example below.

Each file (and directory) has associated
access rights, which may be found by typing ls -l. Also, ls -lg gives additional information as to which group owns the
file (beng95 in the following example):
-rwxrw-r-- 1 ee51ab beng95 2450 Sept29
11:52 file1
In the left-hand column is a 10 symbol
string consisting of the symbols d, r, w, x, -, and, occasionally, s or S. If d
is present, it will be at the left hand end of the string, and indicates a
directory: otherwise - will be the starting symbol of the string.
The 9 remaining symbols indicate the
permissions, or access rights, and are taken as three groups of 3.
·
The left group of 3 gives the file
permissions for the user that owns the file (or directory) (ee51ab in the above
example);
·
the middle group gives the permissions for
the group of people to whom the file (or directory) belongs (eebeng95 in the
above example);
·
the rightmost group gives the permissions
for all others.
The symbols r, w, etc., have slightly
different meanings depending on whether they refer to a simple file or to a
directory.
Access rights on files.
·
r (or -), indicates read permission (or
otherwise), that is, the presence or absence of permission to read and copy the
file
·
w (or -), indicates write permission (or
otherwise), that is, the permission (or otherwise) to change a file
·
x (or -), indicates execution permission
(or otherwise), that is, the permission to execute a file, where appropriate
Access rights on directories.
·
r allows users to list files in the
directory;
·
w means that users may delete files from
the directory or move files into it;
·
x means the right to access files in the
directory. This implies that you may read files in the directory provided you
have read permission on the individual files.
So, in order to read a file, you must have
execute permission on the directory containing that file, and hence on any
directory containing that directory as a subdirectory, and so on, up the tree.
Some examples
-rwxrwxrwx
|
a
file that everyone can read, write and execute (and delete).
|
-rw-------
|
a
file that only the owner can read and write - no-one else
can read or write and no-one has execution rights (e.g. your mailbox file). |
5.2 Changing access rights
chmod (changing a file mode)
Only the owner of a file can use chmod to
change the permissions of a file. The options of chmod are as follows
Symbol
|
Meaning
|
u
|
user
|
g
|
group
|
o
|
other
|
a
|
all
|
r
|
read
|
w
|
write
(and delete)
|
x
|
execute
(and access directory)
|
+
|
add
permission
|
-
|
take
away permission
|
For example, to remove read write and
execute permissions on the file biglist for the group and others, type
% chmod go-rwx biglist
This will leave the other permissions
unaffected.
To give read and write permissions on the
file biglist to all,
% chmod a+rw biglist
Exercise 5a
Try changing access permissions on the
file science.txt and on the directory backups
Use ls -l to check that the permissions have changed.
5.3 Processes and Jobs
A process is an executing program
identified by a unique PID (process identifier). To see information about your
processes, with their associated PID and status, type
% ps
A process may be in the foreground, in the
background, or be suspended. In general the shell does not return the UNIX
prompt until the current process has finished executing.
Some processes take a long time to run and
hold up the terminal. Backgrounding a long process has the effect that the UNIX
prompt is returned immediately, and other tasks can be carried out while the
original process continues executing.
Running background processes
To background a process, type an &
at the end of the command line. For example, the command sleep waits a given number of seconds before
continuing. Type
% sleep 10
This will wait 10 seconds before returning
the command prompt %. Until the command prompt is returned, you can do nothing
except wait.
To run sleep in the background, type
% sleep 10 &
[1] 6259
The & runs the job in the
background and returns the prompt straight away, allowing you do run other
programs while waiting for that one to finish.
The first line in the above example is
typed in by the user; the next line, indicating job number and PID, is returned
by the machine. The user is be notified of a job number (numbered from 1)
enclosed in square brackets, together with a PID and is notified when a
background process is finished. Backgrounding is useful for jobs which will
take a long time to complete.
Backgrounding a current foreground process
At the prompt, type
% sleep 1000
You can suspend the process running in the
foreground by typing ^Z, i.e.hold down the [Ctrl] key and type [z].
Then to put it in the background, type
% bg
Note:
do not background programs that require user interaction e.g. vi
5.4 Listing suspended and background processes
When a process is running, backgrounded or
suspended, it will be entered onto a list along with a job number. To examine
this list, type
% jobs
An example of a job list could be
[1] Suspended sleep 1000
[2] Running netscape
[3] Running matlab
[2] Running netscape
[3] Running matlab
To restart (foreground) a suspended
processes, type
% fg %jobnumber
For example, to restart sleep 1000, type
% fg %1
Typing fg with no job number foregrounds the last suspended
process.
5.5 Killing a process
kill (terminate or signal a process)
It is sometimes necessary to kill a
process (for example, when an executing program is in an infinite loop)
To kill a job running in the foreground,
type ^C (control c). For example, run
% sleep 100
^C
^C
To kill a suspended or background process,
type
% kill %jobnumber
For example, run
% sleep 100 &
% jobs
% jobs
If it is job number 4, type
% kill %4
To check whether this has worked, examine
the job list again to see if the process has been removed.
ps (process status)
Alternatively, processes can be killed by
finding their process numbers (PIDs) and using kill PID_number
% sleep 1000 &
% ps
% ps
PID TT S TIME COMMAND
20077 pts/5 S 0:05 sleep 1000
21563 pts/5 T 0:00 netscape
21873 pts/5 S 0:25 nedit
20077 pts/5 S 0:05 sleep 1000
21563 pts/5 T 0:00 netscape
21873 pts/5 S 0:25 nedit
To kill off the process sleep 1000,
type
% kill 20077
and then type ps again to see if it has been removed from
the list.
If a process refuses to be killed, uses
the -9 option, i.e. type
% kill -9 20077
Note:
It is not possible to kill off other users' processes !!!
Summary
Command
|
Meaning
|
ls -lag
|
list
access rights for all files
|
chmod [options]
file
|
change
access rights for named file
|
command &
|
run
command in background
|
^C
|
kill
the job running in the foreground
|
^Z
|
suspend
the job running in the foreground
|
bg
|
background
the suspended job
|
jobs
|
list
current jobs
|
fg %1
|
foreground
job number 1
|
kill %1
|
kill
job number 1
|
ps
|
list
current processes
|
kill 26152
|
kill
process number 26152
|
Other useful UNIX commands
quota
All students are allocated a certain amount
of disk space on the file system for their personal files, usually about 100Mb.
If you go over your quota, you are given 7 days to remove excess files.
To check your current quota and how much
of it you have used, type
% quota -v
df
The df command reports on the space left on the file system.
For example, to find out how much space is left on the fileserver, type
% df .
du
The du command outputs the number of kilobyes used by each
subdirectory. Useful if you have gone over quota and you want to find out which
directory has the most files. In your home-directory, type
% du -s *
The -s flag will display only a
summary (total size) and the * means all files and directories.
gzip
This reduces the size of a file, thus
freeing valuable disk space. For example, type
% ls -l science.txt
and note the size of the file using ls -l . Then to compress science.txt, type
% gzip science.txt
This will compress the file and place it
in a file called science.txt.gz
To see the change in size, type ls -l again.
To expand the file, use the gunzip command.
% gunzip science.txt.gz
zcat
zcat will read gzipped
files without needing to uncompress them first.
% zcat science.txt.gz
If the text scrolls too fast for you, pipe
the output though less .
% zcat science.txt.gz | less
file
file classifies the
named files according to the type of data they contain, for example ascii
(text), pictures, compressed data, etc.. To report on all files in your home
directory, type
% file *
diff
This command compares the contents of two
files and displays the differences. Suppose you have a file called file1 and
you edit some part of it and save it as file2. To see the differences
type
% diff file1 file2
Lines beginning with a < denotes
file1, while lines beginning with a > denotes file2.
find
This searches through the directories for
files and directories with a given name, date, size, or any other attribute you
care to specify. It is a simple command but with many options - you can read
the manual by typing man find.
To search for all fies with the extention .txt,
starting at the current directory (.) and working through all sub-directories,
then printing the name of the file to the screen, type
% find . -name "*.txt" -print
To find files over 1Mb in size, and
display the result as a long listing, type
% find . -size +1M -ls
history
The C shell keeps an ordered list of all
the commands that you have entered. Each command is given a number according to
the order it was entered.
% history (show command history list)
If you are using the C shell, you can use
the exclamation character (!) to recall commands easily.
% !! (recall last command)
% !-3 (recall third most recent command)
% !5 (recall 5th command in list)
% !grep (recall last command starting with grep)
You can increase the size of the history
buffer by typing
% set history=100
7.1 Compiling UNIX software packages
We have many public domain and commercial
software packages installed on our systems, which are available to all users.
However, students are allowed to download and install small software packages
in their own home directory, software usually only useful to them personally.
There are a number of steps needed to
install the software.
·
Locate and download the source code (which
is usually compressed)
·
Unpack the source code
·
Compile the code
·
Install the resulting executable
·
Set paths to the installation directory
Of the above steps, probably the most
difficult is the compilation stage.
Compiling Source Code
All high-level language code must be
converted into a form the computer understands. For example, C language source
code is converted into a lower-level language called assembly language. The
assembly language code made by the previous stage is then converted into object
code which are fragments of code which the computer understands directly. The
final stage in compiling a program involves linking the object code to code
libraries which contain certain built-in functions. This final stage produces
an executable program.
To do all these steps by hand is
complicated and beyond the capability of the ordinary user. A number of
utilities and tools have been developed for programmers and end-users to
simplify these steps.
make and the Makefile
The make command allows programmers to manage large programs or
groups of programs. It aids in developing large programs by keeping track of
which portions of the entire program have been changed, compiling only those
parts of the program which have changed since the last compile.
The make program gets its set of compile rules from a text file
called Makefile which resides in the same directory as the source files.
It contains information on how to compile the software, e.g. the optimisation
level, whether to include debugging info in the executable. It also contains
information on where to install the finished compiled binaries (executables),
manual pages, data files, dependent library files, configuration files, etc.
Some packages require you to edit the
Makefile by hand to set the final installation directory and any other
parameters. However, many packages are now being distributed with the GNU
configure utility.
configure
As the number of UNIX variants increased,
it became harder to write programs which could run on all variants. Developers
frequently did not have access to every system, and the characteristics of some
systems changed from version to version. The GNU configure and build system
simplifies the building of programs distributed as source code. All programs
are built using a simple, standardised, two step process. The program builder
need not install any special tools in order to build the program.
The configure shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses those
values to create a Makefile in each directory of the package.
The simplest way to compile a package is:
1.
cd to the directory containing the package's source code.
2.
Type ./configure to configure the package for your system.
3.
Type make to compile the package.
4.
Optionally, type make check to run any self-tests that come with the
package.
5.
Type make install to install the programs and any data files and
documentation.
6.
Optionally, type make clean to remove the program binaries and object
files from the source code directory
The configure utility supports a wide
variety of options. You can usually use the --help option to get a list
of interesting options for a particular configure script.
The only generic options you are likely to
use are the --prefix and --exec-prefix options. These options are
used to specify the installation directories.
The directory named by the --prefix
option will hold machine independent files such as documentation, data and
configuration files.
The directory named by the --exec-prefix
option, (which is normally a subdirectory of the --prefix directory),
will hold machine dependent files such as executables.
7.2 Downloading source code
For this example, we will download a piece
of free software that converts between different units of measurements.
First create a download directory
% mkdir download
Download the software here and save it to your new download directory.
7.3 Extracting the source code
Go into your download directory and
list the contents.
% cd download
% ls -l
% ls -l
As you can see, the filename ends in
tar.gz. The tar command turns several files and directories into one single tar
file. This is then compressed using the gzip command (to create a tar.gz file).
First unzip the file using the gunzip
command. This will create a .tar file.
% gunzip units-1.74.tar.gz
Then extract the contents of the tar file.
% tar -xvf units-1.74.tar
Again, list the contents of the download
directory, then go to the units-1.74 sub-directory.
% cd units-1.74
7.4 Configuring and creating the Makefile
The first thing to do is carefully read
the README and INSTALL text files (use the less command). These
contain important information on how to compile and run the software.
The units package uses the GNU configure
system to compile the source code. We will need to specify the installation
directory, since the default will be the main system area which you will not
have write permissions for. We need to create an install directory in your home
directory.
% mkdir ~/units174
Then run the configure utility setting the
installation path to this.
% ./configure --prefix=$HOME/units174
NOTE:
The $HOME variable is an example of an environment variable. The value
of $HOME is the path to your home directory. Just type
% echo $HOME
to show the contents of this variable. We will learn more about environment variables in a later chapter.
% echo $HOME
to show the contents of this variable. We will learn more about environment variables in a later chapter.
If configure has run correctly, it will have created a Makefile with
all necessary options. You can view the Makefile if you wish (use the less command), but do not edit the contents of
this.
7.5 Building the package
Now you can go ahead and build the package
by running the make command.
% make
After a minute or two (depending on the
speed of the computer), the executables will be created. You can check to see
everything compiled successfully by typing
% make check
If everything is okay, you can now install
the package.
% make install
This will install the files into the ~/units174
directory you created earlier.
7.6 Running the software
You are now ready to run the software
(assuming everything worked).
% cd ~/units174
If you list the contents of the units
directory, you will see a number of subdirectories.
bin
|
The
binary executables
|
info
|
GNU
info formatted documentation
|
man
|
Man
pages
|
share
|
Shared
data files
|
To run the program, change to the bin
directory and type
% ./units
As an example, convert 6 feet to
metres.
You have: 6 feet
You want: metres
You want: metres
* 1.8288
If you get the answer 1.8288,
congratulations, it worked.
To view what units it can convert between,
view the data file in the share directory (the list is quite comprehensive).
To read the full documentation, change
into the info directory and type
% info --file=units.info
7.7 Stripping unnecessary code
When a piece of software is being
developed, it is useful for the programmer to include debugging information into
the resulting executable. This way, if there are problems encountered when
running the executable, the programmer can load the executable into a debugging
software package and track down any software bugs.
This is useful for the programmer, but
unnecessary for the user. We can assume that the package, once finished and
available for download has already been tested and debugged. However, when we
compiled the software above, debugging information was still compiled into the
final executable. Since it is unlikey that we are going to need this debugging
information, we can strip it out of the final executable. One of the advantages
of this is a much smaller executable, which should run slightly faster.
What we are going to do is look at the
before and after size of the binary file. First change into the bin
directory of the units installation directory.
% cd ~/units174/bin
% ls -l
% ls -l
As you can see, the file is over 100
kbytes in size. You can get more information on the type of file by using the
file command.
% file units
units: ELF 32-bit LSB executable, Intel
80386, version 1, dynamically linked (uses shared libs), not stripped
To strip all the debug and line numbering
information out of the binary file, use the strip command
% strip units
% ls -l
% ls -l
As you can see, the file is now 36 kbytes
- a third of its original size. Two thirds of the binary file was debug code!!!
Check the file information again.
% file units
units: ELF 32-bit LSB executable, Intel
80386, version 1, dynamically linked (uses shared libs), stripped
Sometimes you can use the make command to install pre-stripped copies of
all the binary files when you install the package. Instead of typing make install, simply type make install-strip.
8.1 UNIX Variables
Variables are a way of passing information
from the shell to programs when you run them. Programs look "in the
environment" for particular variables and if they are found will use the
values stored. Some are set by the system, others by you, yet others by the
shell, or any program that loads another program.
Standard UNIX variables are split into two
categories, environment variables and shell variables. In broad terms, shell
variables apply only to the current instance of the shell and are used to set
short-term working conditions; environment variables have a farther reaching
significance, and those set at login are valid for the duration of the session.
By convention, environment variables have UPPER CASE and shell variables have
lower case names.
8.2 Environment Variables
An example of an environment variable is
the OSTYPE variable. The value of this is the current operating system you are
using. Type
% echo $OSTYPE
More examples of environment variables are
·
USER (your login name)
·
HOME (the path name of your home
directory)
·
HOST (the name of the computer you are
using)
·
ARCH (the architecture of the computers
processor)
·
DISPLAY (the name of the computer screen
to display X windows)
·
PRINTER (the default printer to send print
jobs)
·
PATH (the directories the shell should
search to find a command)
Finding out the current values of these variables.
ENVIRONMENT variables are set using the setenv command, displayed using the printenv or env commands, and unset using the unsetenv command.
To show all values of these variables,
type
% printenv | less
8.3 Shell Variables
An example of a shell variable is the
history variable. The value of this is how many shell commands to save, allow
the user to scroll back through all the commands they have previously entered.
Type
% echo $history
More examples of shell variables are
·
cwd (your current working directory)
·
home (the path name of your home
directory)
·
path (the directories the shell should
search to find a command)
·
prompt (the text string used to prompt for
interactive commands shell your login shell)
Finding out the current values of these variables.
SHELL variables are both set and displayed
using the set
command. They can be unset by using the unset command.
To show all values of these variables,
type
% set | less
So what is the difference between PATH and path ?
In general, environment and shell
variables that have the same name (apart from the case) are distinct and
independent, except for possibly having the same initial values. There are,
however, exceptions.
Each time the shell variables home, user
and term are changed, the corresponding environment variables HOME, USER and
TERM receive the same values. However, altering the environment variables has
no effect on the corresponding shell variables.
PATH and path specify directories to
search for commands and programs. Both variables always represent the same
directory list, and altering either automatically causes the other to be
changed.
8.4 Using and setting variables
Each time you login to a UNIX host, the
system looks in your home directory for initialisation files. Information in
these files is used to set up your working environment. The C and TC shells
uses two files called .login and .cshrc (note that both file names begin with a
dot).
At login the C shell first reads .cshrc
followed by .login
.login
is to set conditions which will apply to the whole session and to perform
actions that are relevant only at login.
.cshrc
is used to set conditions and perform actions specific to the shell and to each
invocation of it.
The guidelines are to set ENVIRONMENT
variables in the .login file and SHELL variables in the .cshrc
file.
WARNING: NEVER put commands that run graphical displays (e.g. a
web browser) in your .cshrc or .login file.
8.5 Setting shell variables in the .cshrc file
For example, to change the number of shell
commands saved in the history list, you need to set the shell variable history.
It is set to 100 by default, but you can increase this if you wish.
% set history = 200
Check this has worked by typing
% echo $history
However, this has only set the variable
for the lifetime of the current shell. If you open a new xterm window, it will
only have the default history value set. To PERMANENTLY set the value of
history, you will need to add the set command to the .cshrc file.
First open the .cshrc file in a
text editor. An easy, user-friendly editor to use is nedit.
% nedit ~/.cshrc
Add the following line AFTER the list of
other commands.
set history = 200
Save the file and force the shell to
reread its .cshrc file buy using the shell source command.
% source .cshrc
Check this has worked by typing
% echo $history
8.6 Setting the path
When you type a command, your path (or
PATH) variable defines in which directories the shell will look to find the
command you typed. If the system returns a message saying "command:
Command not found", this indicates that either the command doesn't exist
at all on the system or it is simply not in your path.
For example, to run units, you either need
to directly specify the units path (~/units174/bin/units), or you need
to have the directory ~/units174/bin in your path.
You can add it to the end of your existing
path (the $path represents this) by issuing the command:
% set path = ($path ~/units174/bin)
Test that this worked by trying to run
units in any directory other that where units is actually located.
% cd
% units
% units
To add this path PERMANENTLY, add the
following line to your .cshrc AFTER the list of other commands.
set path = ($path ~/units174/bin)
No comments:
Post a Comment